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Abstract. By using the Lie group theory, symmetries of the system of equations, describing 
Newtonian static stars in radiative equilibrium, are investigated. It  turns out that the 
most general symmetries are those resulting from quasi-homologous transformations. These 
symmetries enforce a corresponding equation of state. Stromgren’s homologous stars are 
a special case of this, more general, class of solutions. 

1. Introduction 

One of the main problems in the group analysis of differential equations is the 
investigation of properties of the group admissible by the differential equation structure. 
In the set of all solutions the action of an admissible group induces a certain algebraic 
structure which can be used to find a family of new solutions from the known ones 
(Ovsiannikov 1982). 

In the present work we apply Lie group theory to investigate group properties of 
the system of four structure equations describing Newtonian static stars in radiative 
equilibrium. Two of these equations, namely the hydrostatic equilibrium equation and 
the mass continuity equation, were investigated by Collins from the group theory point 
of view (Collins 1977). 

As is well known from Stromgren’s theorem (Stromgren 1936) new solutions, for 
such a system of equations, can be obtained from the known ones through the 
homologous transformations. New solutions will describe new configurations with 
different mass, radius and chemical composition (the so-called homologous stars). We 
generalise this result by introducing the notion of quasi-homologous stars, i.e. the stars 
whose equation of state admits quasi-homology symmetries. Homologous stars are a 
special case of quasi-homologous ones. At the present stage of our investigation, this 
should be treated as a purely mathematical result, although it cannot be excluded that 
the obtained dependencies between luminosity and temperature, mass and temperature 
and so on could be employed in a manner similar to that done by Stromgren (1936) 
to fully interpret the Hertzsprung-Russell diagram. 

The material is organised as follows. Section 2 gives the necessary rudiments of 
the group method to analyse symmetries of differential equations (we closely follow 
Collins’ presentation). The quasi-homologous structure of the Newtonian star 
equations is analysed in § 3. In 0 4 we investigate equations of state enforced by 
homology symmetry postulates. Finally the main results of our research are sum- 
marised. 
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2. Mathematical background 

In the present work we consider differential equation systems of the following form 

(1 )  du' ldx = f ' ( x ,  U', . . . , U") i = 1, . . . , m. 
We consider point transformations generated by the infinitesimal operator 

a m  a 
ax i = l  8U 

X = [ ( x ,  U], . . . , U")-+ c v ' ( x ,  U], . . . , U"): 

For the infinitesimal operator X there exist m independent invariants which are 
solutions to the following system: 

(3) 

The point transformation generated by X is called homologous if 6 = ax and v i  = g'u', 
where a, g', i = 1, . . . , m are constants. It can easily be seen that system ( 1 )  is similarity 
invariant in this case. 

A natural extension of this special case leads us to the notion of quasi-homologous 
transformations: 5 = s ( x ) ,  v i  = v ' (  U'), i = 1 ,  . . . , m. System (1) admits the infinitesimal 
operator ( 2 )  if and only if the following condition is satisfied: 

dum - - * . .  = du '  - dx 
[ ( x ,  u l , .  * . , U") - v y x ,  U], . . . , U") V " ( X ,  U ] ,  . , . , U")' 

' du 'duJ  as) d u ' a g  
- - X ( f ' ) = O  i = 1, . . . , m. ( 4 )  

Condition ( 4 )  tells us whether the symmetry operator X is admitted by system ( 1 )  or 
not (Ovsiannikov 1982). It is easily seen that, in the case of a quasi-homologous 
transformation, equation ( 4 )  assumes the form 

d7i  d'- X(lnf ')  du'  dx i = 1 ,  . . . , m. 

3. Quasi-homologous transformations of structure equations 

The structure equations for a Newtonian static star are the following (Schwarzschild 
1958): 

hydrostatic equilibrium -- dP GMP ---- 
d r  r2 
d M  
- = 4 1 ~ r ' p  
d r  

mass continuity ( 7 )  

dL 
- d r  = 4 m 2 p & ( p ,  T )  thermal equilibrium ( 8 )  

either 

x ( p ,  T) radiative equilibrium 
d T  3 
d r  161~ac  r2 T3  
-- 

or 
d T  r2-1 T d p  
d r  T2 P dr  
----_ - adiabatic convective equilibrium 

( 9 )  
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where M is the mass within the sphere of radius r, p the density, p the pressure, L the 
luminosity at the surface of the sphere of radius r, T the temperature, E the energy 
generation rate, x the opacity, G the gravitational constant, c the velocity of light and 
a the Stefan-Boltzmann constant. 

First we shall consider the case of radiative equilibrium. Assuming the equation 
of state in the form p = p(p,  T) we can rewrite (6) in the more convenient form 

d r  

Now, we look for the symmetry transformations of equations ( l l ) ,  ( 7 ) ,  (8) and (9) 
generated by the operator 

a a a a a 
X = 5 ( r )  -+q ' (p)-+q2(M)-+q3(L) -+ q4(T)-. 

ar  aP dM aL dT 
If we denote 

3 L ap f=-GM+-- X -  
161rac T3 dT 

the admissible equations take the form 

d p  dr  r p 
3 L a  

Since the right-hand side of equation (14) depends only on p, therefore q' = a l p  where 
a1 is a constant. It is easy to verify, by the same argument and by substitution into 
equations (13)-( 16), that also 

T~ = a,M 773 = a3L 5 = f (  a2 - a l ) r  
where a 2 ,  a3 are constants. By substituting these equations into the system (13 ) - (  16) 
one obtains 
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Equations (19) and (20) imply that the opacity coefficient x and the energy generation 
rate E are determined by the property of quasi-homologous temperature transformation 
generated by the component 7)4( T)d/dT. This gives us the following solutions: 

where 9, i,b are arbitrary functions. 
There still remain equations (17) and (18) to be solved. Since we have some freedom 

in choosing the function q 4 ( T ) ,  and the function p ( p ,  T )  is never precisely known, 
we shall look for those equations of state p = p ( p ,  T )  that are enforced by the transfor- 
mations generated by operator (2). It is easy to check, by using equations (17) and  
(18), that p = p ( p ,  T )  satisfies the continuity condition a2p/apaT = a2p/aTap which in 
fact is a consistency condition for (17) and (18). Depending on the hyperbolic or  
parabolic character of equations (17) and  (18) four cases can be distinguished (see 
table 1). The solutions for cases I-IV are the following. 

Case I 
a*-LY1 d a a a a 

X = -  r - +  a l p  -+ a2M-+ a3 L - +  v4( T )  - 
3 a r  aP aM aL aT 

The standard method of reduction to the canonical form, when applied to equation 
(18), gives 

where 
a 1  d t  

In this case, the general solution of equation (23) assumes the form (Vladimirov 1974): 

where 
*a + f a 2  

T4(t)  * 

A ( t ) = '  

h ( y )  is of C 2  class and  g ( 5 )  is of C' class of differentiability. 

Table 1. 

a ,  f O  a ,  = o  

1 1 4 ( ~ ) + ~  I .  (17) hyperbolic 111. (17) parabolic 
(18) hyperbolic (18) hyperbolic 

l74( T )  = 0 11. (17) hyperbolic IV. (17) parabolic 
(18) parabolic (18) parabolic 
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By substituting the general solution (24) in equation (17) we obtain the additional 
condition for h ( y )  

( 2 5 )  

The solution of this equation is 

where C, and C2 are constants. 

function g = g( 5). 
This solution implies that in equation (24) there is still the freedom in choosing a 

Case I I  

X = -  a2-aI r - + a 2 M - + a 3 L - + v 4 ( T ) -  a a a a 
3 ar aM aL aT'  

By proceeding in the same way as in the previous case we obtain 

where 

and  h, g satisfy differentiability conditions as in the previous case and C, ,  C2 are 
constants. 

Case I I I  

X = -  a 3 - a 2  r - +  a a l p - +  a a 2 M - +  a a3L-. a 
3 a r  aP dM aL 

Similar calculations give 

p ( p ,  T )  = h ( p )  + g ( t )  dtp;t:"2'al J io 
where 

h ( p )  = clp:+:o2'0! + c2 
h, g satisfy the differentiability conditions as previously and  C , ,  C2 are constants. 

Case IV 

a2-a l  a a a X = -  r -+  a 2 M - +  a3L-, 
3 ar aM aL 

In this case we have the following solutions: 

p =constant 

P = P ( P )  f o r j a , + f a ,  = O  
P = P ( T )  fo r$a2+$a ,  =o. 
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We can construct finite transformations and group invariants. In case I ,  for example, 
we obtain four independent invariants Lo,  M O ,  ro and po: 

By using these invariants, we can construct the new families of solutions, for instance 
(i)  if L( T )  is the solution of ( l l ) ,  (7) ,  (8) and (9), then also 

is the solution, where E (  T )  is a finite transformation of T, 
(ii) if M ( T )  is the solution of ( l l ) ,  (7) ,  (8) and (9), then also 

is the solution. 

4. Homologous symmetry transformations of structure equations 

It is well known that equations ( l l) ,  (7) ,  (8) and (9) admit similarity symmetries for 
the state equation of an ideal gas: p - p T .  This fact induces a certain class of 
homologous solutions to the system. Some classical results have been obtained by 
Stromgren (1936). 

In order to investigate how general our results are, let us assume the rescaling 
symmetry: v4( T )  = a4T Then, in case I, for instance, the following equation of state 
is enforced: 

7-1+(4a,+2a2)/3o, 

' 1  ~ ( 4 u , + 2 ~ ~ ) / 3 a , +  1, (33) 
P ( X ¶  T ) = , L y  3 1  +1, 3 2  + a ,  g(5)d5  ja ,+fa2+a4 . 
One should notice that equation (33) contains the following form of the equation of 
state: 

p = upA + bTB + cpCTD. (34) 
The infinitesimal operator corresponding to the homologous transformations takes 

the form 
a 2 - a ,  a a a a a 

X = -  r-+ a l p - + a 2 M - + a 3 L - + a 4 T - .  
3 a r  a P  aM aL dT (35) 

The operator given by equation (35) has four independent invariants, for instance 
J ]  = pr'ui/(ai-a2) 
j3 = L M - ~ J ~ ~  

J2 = pM-"1/"2 

J4 = LT-03/U4a 



Newtonian static star equations 1319 

By using these invariants we can arrive at various homology theorems, for example 
the theorem associated with J , :  if p ( r )  is the solution of ( l l ) ,  (7),  ( 8 )  and (9), then 
p { r  exp[(a2- al)/3]} 

From J:, we obtain L -  M"3'"2 which corresponds to the well known Eddington 
mass-luminosity dependence. The infinitesimal operator (35)  generates a Lie algebra 
spanned by the basis operators 

is also the solution. 

X ,  = -$alar + p a l a p  
X 2  = f r  a l a r  + M alaM 

x3 = L alaL 

X 4 =  TalaT.  

Now we can construct solutions associated with these operators. Let us start with X I .  
Since pr3  is an invariant we can have p (  r )  = p o r - 3 .  By substituting this in equation ( 7 )  
and by integrating it over r, we obtain M (  r )  = Mo+4Tpo In r, and consequently from 
equation (6) 

G P o ( ~ o + ~ P o ) + T p ~ c  In r I 
4 r4 r p ( r )  = 

If the functions ~ ( p ,  T )  and x ( p ,  T )  are given explicitly, we can continue the integration 
and obtain the solutions to system (6)-(9). As can be seen from equations (19) and 
(20), the particular solution, obtained by the separation of variables, is E - p h i  Th2, x - 
pF1T'2; this is the form commonly used in astrophysics (Schwarzschild 1958). 

The application of the above procedure to X2 produces the following formulae: 

M (  r )  = Mor3 p ( r )  = 3M0/4.rr 

We shall now briefly present the basis operators for some particular cases that are 
important from the physical point of view. 

(i) Photon gas, p - T 4  

X - -'r-+p-+'T- a a  a 
ar a p  aT 

a a a - lr-+ M-+iT- x - -  ar aM dT 

1 -  3 

a 
X 3 = L -  

aL 

X 4  = 0. 

(ii) Ideal gas, p - pT 

X - -'r-+p-+'T- a a  a 
a r  a p  aT 

a a a 
ar aM aT 

1 -  3 

X2=fr-+ M-+iT- 

a X 3 = L -  
aL 
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X ,  = 0. 

(iii) Degenerate gas, p - p5’3 

a a  a 
a r  ag ’ aM 

x - - l r - + p - + i M -  
1 -  6 

x 2 = 0  

a x3= L -  
aL 

a 
aT’ 

X4= T -  

The solution associated with X I  is 

(iv) Relativistic degenerate electron gas, p - p4’3 

a a  x - - L r - + p -  
ar ap 

x2= L -  
aL 

1 -  3 

a 

a 
X4= T -  

a T ’  

(v) Ideal and photon gas 

a 
X 3 = L -  

aL 

X 4  = 0. 

I t  is interesting to notice that the Eddington mass-luminosity dependence is not satisfied 
any longer, as there are no non-trivial invariants associated with M. 

(vi)  Ideal and degenerate gas 

a 
X 3 = L -  

aL 

X ,  = 0. 
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5. Conclusion 

We have characterised, by computing infinitesimal operators, the structure of the group 
admissible by a system of equations describing Newtonian static stars in radiative 
equilibrium. We have shown that, in the most general case, the equations admit an 
infinite-parameter group of quasi-homologous transformations. These symmetries 
enforce appropriate equations of state. In the particular case of a five-parameter 
homologous group, the Stromgren results are recovered. 

The equation of state (33) is very general. It contains both physical and non-physical 
situations. 
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